首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   80篇
  国内免费   133篇
测绘学   3篇
大气科学   68篇
地球物理   324篇
地质学   260篇
海洋学   144篇
天文学   307篇
综合类   13篇
自然地理   84篇
  2024年   3篇
  2023年   8篇
  2022年   19篇
  2021年   25篇
  2020年   26篇
  2019年   32篇
  2018年   21篇
  2017年   30篇
  2016年   22篇
  2015年   36篇
  2014年   39篇
  2013年   54篇
  2012年   22篇
  2011年   35篇
  2010年   26篇
  2009年   61篇
  2008年   54篇
  2007年   59篇
  2006年   67篇
  2005年   66篇
  2004年   64篇
  2003年   52篇
  2002年   38篇
  2001年   48篇
  2000年   65篇
  1999年   70篇
  1998年   77篇
  1997年   26篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
排序方式: 共有1203条查询结果,搜索用时 265 毫秒
1.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
2.
3.
4.
5.
Pco2 of air and seawater samples from the East China Sea(ECS) were measured in situ in autumn, 1994,Ocean currents,terrestrial fluviation,biological activities,etc.,Pco2 char-acters in air and seawater were investigated,CO2 flux and its character in the East China Sea are discussed on the basis of the Pco2 profiles of air and seawater,It was clear that the nearshore was the source of CO2;and tht the oulter sea area was the sink of CO2; and that the shelf area of the EXS is a net sink for atmospheric CO2 in autumn.  相似文献   
6.
We use cosmological smooth particle hydrodynamical (SPH) simulations to study the effects of mergers in the star formation history of galactic objects in hierarchical clustering scenarios. We find that during some merger events, gaseous discs can experience two starbursts: the first one during the orbital decay phase, owing to gas inflows driven as the satellite approaches, and the second one when the two baryonic clumps collide. A trend for these first induced starbursts to be more efficient at transforming the gas into stars is also found. We detect that systems that do not experience early gas inflows have well-formed stellar bulges and more concentrated potential wells, which seem to be responsible for preventing further gas inward transport triggered by tidal forces. The potential wells concentrate owing to the accumulation of baryons in the central regions and of dark matter as the result of the pulling in by baryons. The coupled evolution of the dark matter and baryons would lead to an evolutionary sequence during which systems with shallower total potential wells suffer early gas inflows during the orbital decay phase that help to feed their central mass concentration, pulling in dark matter and contributing to build up more stable systems. Within this scenario, starbursts triggered by early gas inflows are more likely to occur at early stages of evolution of the systems and to be an important contributor to the formation of stellar bulges. Our results constitute the first proof that bulges can form as the product of collapse, collisions and secular evolution in a cosmological framework, and they are consistent with a rejuvenation of the stellar population in bulges at intermediate z with, at least, 50 per cent of the stars (in SCDM) being formed at high z .  相似文献   
7.
8.
9.
10.
Abstract. Ecology and Global Ecology (GE) are terms by which the relations between the organism (or living matter as a whole) and the environment (or Earth as a whole) have been treated for almost a century. Geophysiology and Parahistology (PH) are terms slowly replacing older scientific thoughts jointly with an increasing number of modifications and alterations of the Darwinian Evolution (DE) concept. Somehow Geophysiology and Parahistology seem to describe evolution in a non-Darwinian domain. According to V.I. Vernadsky (1929,1930,1988) - the great Russian naturalist and biogeochemist - the biogeochemical processes on Earth are controlled by the force of living matter rather than by species associations developing in and with individual ecosystems as expressed by darwinian evolutionary terms. He also claimed that Goethe was incorrectly regarded as a predecessor of DE by some authors (including Darwin) and that “Natur” (nature) and “Lebendige Natur” (the totality of creatures) are two very different things for Goethe. Detailed analyses of microbial mat systems in the German Wadden Sea and in artificial hypersaline WInogradsky columns have shown that the totality of creatures and matter around them i.e., the “lebendige Natur”sensu Goethe or “living matter”sensu Vernadsky of such environments control to a considerable extent the structure, stability. and (geo-)morphology of sediments and thereby the geological structure of the living Earth. These structures do not follow the rules of sedimentation formulated by the laws of Stokes They represent growth structures (Aufwuchs), whose physics and dynamics are controlled by complex fractal systems. The factors controlling the ultimate shape and stabilisation potential of the eventually resulting rocks and fossils are comparable to tissue development in macroorganisms. Also, certain microbial associations in the sub-recent and in the fossil record may be compared to metazoan tissues. Chemical gradients in the sedimentary column, regulated by the interplay of living matter and sluggish (slow-reactive to non-reactive) compounds, combine to create a pattern of porosity and structure of the resulting deposits that clearly indicates microbial influences and especially those of extracellular polymeric substances on the morphology and texture. The combined effects of microbiota or living matter on the sedimentary record are described as parahistology of sediments in analogy of the histology of tissue on a geological scale. This conceptual living tissue made up of microbially generated rocks and ore deposits cycled through metabolic processes and forced into tissue-like structures by microbial biofilms and mats may extend down to the upper mantle of Earth and far up into the stratosphere when Earth is regarded as a living entity over geological periods. We may have to conceive Earth as a living specimen, which is breathing at a frequency of thousands of years instead of the normal physiological breathing rate of man or an insect. Macroorganisms in all terrestrial systems represent the transport and logistic media, which, however, utterly depend on myriads of intra-, inter-, and extracellular microbial symbiotic partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号